2 research outputs found

    Use of 2d-video Disdrometer to Derive Mean Density-size and Ze-SR Relations: Four Snow Cases from the Light Precipitation Validation Experiment

    Get PDF
    The application of the 2D-video disdrometer to measure fall speed and snow size distribution and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power law is described. Inversion of the methodology proposed by Bhm provides the pathway to use measured fall speed, area ratio and '3D' size measurement to estimate the mass of each particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with supporting data from other instruments such as Precipitation Occurrence Sensor System (POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C9 band radars. The radar-based snow accumulations using the 2DVD-derived Ze-SR relation are in good agreement with a network of seven snow gauges and outperform the accumulations derived from a climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). The normalized bias between radar-derived and gauge accumulation is reduced from 96% when using the fixed FMI relation to 28% when using the Ze-SR relations based on 2DVD data. The normalized standard error is also reduced significantly from 66% to 31%. For two of the days with widely different coefficients of the Ze-SR power law, the reflectivity structure showed significant differences in spatial variability. Liquid water path estimates from radiometric data also showed significant differences between the two cases. Examination of SVI particle images at the measurement site corroborated these differences in terms of unrimed versus rimed snow particles. The findings reported herein support the application of Bhm's methodology for deriving the mean density-size and Ze-SR power laws using data from 2D-video disdrometer

    Estimating radar reflectivity - Snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations

    No full text
    © 2017 Elsevier B.V. Snowfall rate (SR) estimates over Antarctica are sparse and characterised by large uncertainties. Yet, observations by precipitation radar offer the potential to get better insight in Antarctic SR. Relations between radar reflectivity (Ze) and snowfall rate (Ze-SR relations) are however not available over Antarctica. Here, we analyse observations from the first Micro Rain Radar (MRR) in Antarctica together with an optical disdrometer (Precipitation Imaging Package; PIP), deployed at the Princess Elisabeth station. The relation Ze = A*SRB was derived using PIP observations and its uncertainty was quantified using a bootstrapping approach, randomly sampling within the range of uncertainty. This uncertainty was used to assess the uncertainty in snowfall rates derived by the MRR. We find a value of A = 18 [11–43] and B = 1.10 [0.97–1.17]. The uncertainty on snowfall rates of the MRR based on the Ze-SR relation are limited to 40%, due to the propagation of uncertainty in both Ze as well as SR, resulting in some compensation. The prefactor (A) of the Ze-SR relation is sensitive to the median diameter of the snow particles. Larger particles, typically found closer to the coast, lead to an increase of the value of the prefactor (A = 44). Smaller particles, typical of more inland locations, obtain lower values for the prefactor (A = 7). The exponent (B) of the Ze-SR relation is insensitive to the median diameter of the snow particles. In contrast with previous studies for various locations, shape uncertainty is not the main source of uncertainty of the Ze-SR relation. Parameter uncertainty is found to be the most dominant term, mainly driven by the uncertainty in mass-size relation of different snow particles. Uncertainties on the snow particle size distribution are negligible in this study as they are directly measured. Future research aiming at reducing the uncertainty of Ze-SR relations should therefore focus on obtaining reliable estimates of the mass-size relations of snow particles.status: publishe
    corecore